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HIGH-THROUGHPUT biological
methods, namely, methods that per-
form thousands of simultaneous mea-
surements of biological molecules,
have rapidly transformed the land-
scape of biomedical research during
the past decade. Perhaps most central
to this transformation has been the se-
quencing of the human genome and
subsequent free release of genomic in-
formation, emphasized as a critical
goal in the Bermuda Statement by par-
ticipants of the Human Genome
Project (1). With this massive under-
taking largely completed, investiga-
tors are faced with new tools and
unique challenges in this postgenomic
era. The large volume of information
generated by the Human Genome
Project has facilitated the development
of many novel platforms for profiling
each stage in the flow of biological
information: from DNA to RNA to
protein to the myriad of protein inter-
actions, inspiring advancement of the
burgeoning new areas of genomics,
transcriptomics, proteomics, and in-
teractomics, respectively.

Collectively, these core aspects of
modern high-throughput biology each
aim to provide a cross-sectional snap-
shot of fundamental biology to simul-
taneously assess the direct or down-
stream influence of thousands of
genes. Ultimately, this may allow us to
then identify and characterize the en-
tire space of biomolecules that consti-
tute the composite catalogue of possi-
ble therapeutic targets and their roles
in disease, and to thereby affect dis-
ease at a molecular level through im-
proved rational design of new classes
of micro- and nanoscale molecular
therapeutic agents and bioactive med-
ical devices. Improved understanding
of individual targets promises to be
useful in the assessment of risk, diag-
nosis, prognosis, and therapy of hu-
man disease, lending to the possibili-
ties of personalized medicine.

As these high-throughput biologi-
cal tools have the potential to intro-
duce significant changes that could af-
fect the practice of clinical medicine, it
is critical that interventional radiolo-
gists understand them so they can crit-
ically evaluate and integrate them di-
rectly into their own research and
clinical efforts.

Herein we review the implications
of high-throughput biology in the
postgenomic era for biomedical re-
search and clinical practice. In the first
section, we discuss the basic principles
behind high-throughput tools. We
principally focus on array-based high-
throughput biological methods, a key
high-throughput biological tool, and
describe how they are being used to

uncover different aspects of biology.
In the second half, we discuss inter-
pretation of high-throughput data and
the challenges high-throughput bio-
logical techniques present for data
analysis. These discussions provide an
understanding of the high-throughput
technologies currently being applied
in basic research, the biomedical ques-
tions they can be used to address, and
a foundation for the interpretation of
novel results.

ARRAY-BASED HIGH-
THROUGHPUT PLATFORMS

Array-based high-throughput meth-
ods have rapidly been adopted by the
biomedical research community. Since
the initial description of microarray
devices more than a decade ago, they
have grown to encompass many as-
pects of molecular and cell biology
(2,3). Originally devised as a method
for rapid analysis of DNA or RNA
samples, they have since been ex-
tended to assay protein/DNA, pro-
tein/protein, and cell-level interac-
tions. These tools allow simultaneous
reporting on the behavior of thou-
sands of genes, transcripts, and their
products, facilitating a transition from
qualitative analysis of a few genes to
quantitative analysis of gene networks
and cell physiology (Fig 1). Whereas
traditional approaches generally focus
on the response of a few genes to a
biological perturbation, high-through-
put experimental tools now allow one
to investigate many genes without
prior knowledge of what genes are im-
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portant, heralding a paradigm shift in
scientific inquiry to discovery-driven
science. Because many of the genetic
and epigenetic mechanisms underly-
ing human disease are not yet known,
high-throughput biology has the po-
tential to revolutionize the way that
biomedical research is conducted and
to accelerate the discovery of new
therapeutic agents to address human
disease.

Gene Expression Microarrays

The most common and well-devel-
oped array platform is the gene ex-
pression microarray. Several varia-
tions of this tool are commonly used,
and each comes with its own caveats,
but the general principle behind these
arrays is the same. Each gene expres-
sion array is manufactured through
the highly ordered spotting, printing,
or in situ synthesis of thousands of
molecular probes on a glass slide or
nylon membrane. These probes consist
of short oligonucleotides or single-
stranded complementary DNA (cDNA)
sequences fixed to the array surface.
Each probe is designed to be specific
for a particular RNA species. RNA
from a sample of interest—whether
from cell culture, harvested human or
animal tissue, or biopsy—is extracted,
purified, copied, and labeled with a
fluorescent dye. When the fluorescent-
labeled RNA is hybridized onto the
array, each probe hybridizes to its spe-
cific and complementary sequence on
the array via Watson-Crick base pair-
ing. After excess sample is washed off,
the remaining fluorescent-labeled RNA
can be quantitated as a function of its
fluorescence signal intensity with the

use of confocal microscopy, thereby
providing a measure of the proportion
of a given RNA species in the original
sample (Fig 2). The end result is the
ability to perform massively parallel
gene expression hybridization experi-
ments that allow one to simulta-
neously “visualize” and quantify the
expression of every gene on the array
at once. Microarray core facilities at
many research institutions are already
capable of manufacturing these arrays.
Alternatively, they can be purchased
through large commercial manufac-
turers such as Affymetrix (Santa Clara,
CA) and Agilent (Palo Alto, CA).

Affymetrix gene expression arrays
are commercial arrays that consist of
hundreds of thousands of oligonucle-
otide probes, each precisely synthe-
sized on the surface of a glass slide
by computer-aided photolithography.
Affymetrix has taken several unique
steps to improve the reliability of gene
expression measurements from their
arrays. Instead of reading the bright-
ness of each spot directly as a measure
of gene expression, Affymetrix arrays
include several perfect match and mis-
match probes for each gene of interest.
Combined, these probes are known as
a probe set. Signals for each probe in a
probe set are normalized and aver-
aged during postprocessing and inte-
grated to obtain probe set gene expres-
sion scores. Several methods for this
level of data processing are now avail-
able and have been reviewed else-
where (4,5).

In contrast to Affymetrix arrays,
most other gene expression platforms
use robotic spotters to “print” thou-
sands of cDNA or oligonucleotide
probes in precise locations on a glass

slide or membrane. These probes are
then chemically fixed on the surface of
the microarray. Although this method
is generally less precise for controlling
the amount of probe at each location
on the array, robotic spotting is rela-
tively cheap and widely available.
RNA samples can be hybridized to
each array in a manner similar to that
described earlier. Because the amount
of probe present at each spot on the
array is variable, the signal measured
from chip to chip will also vary, even
if the hybridized RNA sample is ex-
actly the same. To overcome inherent
chip-to-chip variability, many investi-
gators have additionally used differ-
ential labeling of two RNA samples.
One RNA sample is labeled with a
green fluorescent dye (Cy3), and the
other is labeled with a red fluorescent
dye (Cy5). Cohybridization of two
samples at the same time allows the
relative difference in hybridization in-
tensity to be used as a finer measure of
gene expression, which can account
for the amount of probe spotted on the
chip.

Two common experimental designs
for two-channel microarrays include
the reference design and the paired
experiment (Fig 3). In a reference de-
sign experiment, an RNA sample of
interest is cohybridized to the array
along with a reference RNA sample.
The same reference RNA is used for all
microarrays in the study. For example,
to examine the gene expression pat-
terns of hepatocellular carcinomas,
Cheung et al (6) extracted RNA from
resected tumors and cohybridized
these with a standard reference pooled
from several different cell lines. The
standard liver reference should theo-
retically have the same gene expres-
sion across all arrays and can there-
fore be used to normalize for variabil-
ity in probe spotting. In comparison, a
paired microarray experiment cohy-
bridizes samples that are experimen-
tally related without a common refer-
ence. One publicly available example
from the Alliance for Cellular Signal-
ing involves a time course of endotox-
in-treated macrophages (7). In this ex-
periment, investigators took cultured
macrophages and treated them with
endotoxin or vehicle for six different
time intervals (2, 4, 6, 8, 24, and 48
hours). At each time point, an endo-
toxin treatment and a vehicle treat-
ment were differentially labeled and

Figure 1. Overview of array platforms and the dimensions of molecular biology that
they can help us understand. CGH and SNP arrays explore DNA content and polymor-
phic sequences, respectively. Promoter arrays span many dimensions of molecular biol-
ogy, depending on the specific protocol and experimental design used. Protein and RNA
interference arrays address the content and activity of individual proteins.

1078 • High-throughput Biology in the Postgenomic Era July 2006 JVIR



cohybridized on an Agilent oligonu-
cleotide array. The investigators also
took the additional care of “dye-swap-
ping” to control for any bias intro-
duced by labeling with either dye. Be-
cause each dye-swap pair was
performed in triplicate, this data set
contained a total of six arrays for each
time point. This kind of experimental
design simultaneously addresses the
chip-to-chip variability and the inher-
ent variability of vehicle-treated cells.
Although the reference design and
paired design are similar, each has
characteristic advantages and disad-
vantages. The choice of a particular
design may be limited by the re-
sources available (eg, biological mate-
rial, financial resources, labor con-
straints) and by the quality of the
arrays. This choice may ultimately
limit the analytic methods that can be
applied and therefore the quality and
interpretation of the results. Each of
these factors should be considered be-
fore a particular microarray platform
or experimental design is decided on.

Comparative Genomic
Hybridization Arrays

Other types of microarrays are de-
signed with similar concepts in mind
(Table). Rather than targeting RNA,
comparative genome hybridization
(CGH) arrays bind DNA sequences
with high specificity. These arrays po-
tentially allow rapid and high-resolu-
tion profiling of DNA copy number

changes across an entire genome. Be-
cause it was recognized that DNA
copy number changes are characteris-
tic of many different cancers, these ar-
rays were devised to rapidly assess
which chromosomal segments are
highly replicated or lost relative to
background DNA (8). CGH arrays are
often designed with cDNA probes pe-
riodically spaced across the genome
while avoiding highly repetitive chro-
mosomal regions. When a fragmented
DNA sample is hybridized on its sur-
face, the array can be used to assess
the relative proportions of each chro-
mosomal segment. This allows for
much greater spatial resolution (ap-
proximately 1 Mb) than traditional
comparative genomic hybridization
methods (approximately 20 Mb) and
can also be performed on a genome-
wide basis, as opposed to fluorescence
in situ hybridization, which generally
operates on a gene-by-gene basis. In
normal human tissue, copy numbers
should be fairly consistent across all
chromosomal segments. In pathologic
tissue such as cancer, which is typified
by genomic instability, DNA copy
numbers may increase or decrease for
specific chromosomal segments, re-
vealing regions of amplification or de-
letion. This information may also un-
cover oncogenes or tumor-suppressor
genes (9–11). Further, localized changes
in copy number are diagnostic of some
cancers and have even been used to
classify certain tumors (12). Although
these arrays have been successful-

ly used to characterize copy number
defects of some cancers, researchers
are currently working on improving
the copy number resolution of these
arrays. Although large copy number
changes are readily detected by cur-
rent renditions of this platform, accu-
rate assessment of single-copy number
changes are still being worked out.

SNP Arrays

Single nucleotide polymorphism
(SNP) arrays are also constructed with
probes that bind specific DNA se-
quences. However, unlike CGH ar-
rays, SNP array probes are generally
designed around specific loci known
to be polymorphic among individuals
of a given species. Such arrays poten-
tially allow rapid genotyping of indi-
viduals at polymorphic sites. It is esti-
mated that there are several million
sites in the human genome. Because
this is currently beyond the scope of
modern array technology, many SNP
arrays have been designed around
polymorphic sites of known biomedi-
cal significance. Researchers have only
recently begun to use these platforms
to associate genetic loci with increased
susceptibility to human disease or re-
sponse to certain drugs (13). For exam-
ple, investigators have used SNP ar-
rays to demonstrate genome-wide
SNPs that result in loss of heterozy-
gosity events in several cancers such
as small-cell lung cancer and bladder
cancer (14–16). More recently, Gar-
raway et al (17) used a novel approach
integrating SNP array and gene ex-
pression array data to uncover a mel-
anoma-specific oncogene, MITF. Us-
ing SNP arrays, they were first able to
isolate a chromosomal region of DNA
copy gain in a melanoma cell line.
Then, by integrating gene expression
array data tightly associated with this
region of amplification, they were able
to isolate and identify the novel lin-
eage-specific oncogene MITF as the
primary driver. Interestingly, they
noted that MITF is a master regulator
for melanocyte differentiation and was
amplified in melanomas but not in
premalignant lesions such as melano-
cytic nevi. In addition, patients who
had melanomas with this amplifica-
tion had worse survival and a greater
tendency to experience metastasis.
This novel lineage-specific oncogene

Figure 2. Overview of gene expression profiling. Messenger RNA is isolated from
tissues or cells and copied, labeled, and hybridized onto microarrays, which are subse-
quently scanned by a confocal microscope. Computational methods are subsequently
used to interpret the resulting image. (RT-PCR � reverse transcriptase polymerase chain
reaction; IVT � in vitro transcription.)
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may serve as a novel therapeutic tar-
get for the treatment of melanoma.

Although SNP arrays offer the ad-
vantage over CGH arrays of greater
resolution at any given locus by being
able to measure changes in DNA copy
number and detect loss of heterozy-
gosity, they cannot yet cover the entire
genome. The number of predicted
SNPs present in the human genome is
estimated at more than 10 million; cur-
rent SNP arrays are able to handle
only a fraction of this number. Never-
theless, these results are very promis-
ing from a clinical standpoint because
they demonstrate that these tools may
help us stratify the risk of development
of disease and better target preventive
therapies to those most likely to benefit
from them. They may help us identify
patients who are more likely to show a
response to a particular drug and iden-

tify those who are more likely to expe-
rience an adverse reaction.

Promoter Arrays

At a more basic level, one of the
most exciting new array formats for
furthering our understanding of gene
regulation is the promoter array. Pro-
moter arrays also use oligonucleotide
or cDNA probes to bind DNA se-
quences, but unlike SNP and CGH ar-
rays, promoter array probes are tar-
geted to promoter regions upstream of
genes of interest. Let us take, for ex-
ample, an investigator interested in
determining the DNA localization of
peroxisome proliferator-activated re-
ceptor–� coactivator 1� across the hu-
man genome in normal and pathologic
liver tissue. To use these arrays, in-
vestigators first perform a chromatin

immunoprecipitation (ChIP) experi-
ment with an antibody against a par-
ticular transcriptional regulator. In
this case, the investigator may use an
antibody against peroxisome prolif-
erator-activated receptor–� coactiva-
tor 1�. The immunoprecipitated DNA/
protein complex is fixed with forma-
lin, which crosslinks the proteins with
each other and with adjacent DNA.
After fragmentation of this DNA, the
crosslinks are chemically reversed. Li-
gation-mediated polymerase chain re-
action can then be used to amplify and
label the remaining DNA fragments.
The resulting labeled DNA is rela-
tively enriched for promoter seg-
ments in the vicinity of the immuno-
precipitated transcriptional regulator.
The investigator can then compare the
resulting array images to determine
which DNA-binding sites are acces-
sible to peroxisome proliferator�
activated receptor–� coactivator 1� in
normal tissue but not in pathologic
tissue. Such arrays are therefore useful
for identifying the transcriptional tar-
gets of individual transcription fac-
tors. Because many current drugs have
direct effects on the transcriptional ap-
paratus, this relatively new tool will be
increasingly valuable for biomedical
research.

This technology has already been
used to help uncover the regulatory
transcriptional networks of several im-
portant transcription factors such as
C-Myc in Burkitt lymphoma and
members of the hepatocyte nuclear
factor family in liver and pancreatic
islets (18–20). The insights gained
from these studies could allow us to
better understand the global role of
these transcription factors, the genes
they regulate, and how their dysregu-
lation may directly or indirectly con-
tribute to disease. In addition, they
may ultimately facilitate the develop-
ment of better-targeted therapeutic
agents. These ChIP chip experiments
have the potential to more precisely
elucidate the direct mechanisms of
drug action. They may be used not
only to identify the specific genes that
are targeted by these drugs but also to
identify other transcriptional regula-
tors that also play a role.

RNA Interference Arrays

Cell-based microarrays represent
the next phase in array-based high-

Figure 3. Common experimental designs used on one-channel and two-channel mi-
croarrays. In an example experiment, an investigator may want to measure RNA content
with and without treatment with a new therapeutic agent. The investigator may choose
from several possible experimental designs. (a) One-channel microarrays measure targets
from a single sample per array. Treatments and controls are measured on separate arrays.
(b) One-channel microarrays may also be used to measure paired controls and treatments.
(c) Two-channel microarrays may involve comeasurement of standardized reference
samples to control for variability between arrays. (d) Two-channel arrays may also be
used without reference samples, recognizing the inherent paired nature of measuring
both samples from a single array. When the paired two-channel design is used, experi-
mental samples may be dye-reversed across multiple arrays to overcome dye bias.
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throughput biology. With these ar-
rays, it is possible to probe a spectrum
of cell types or experimental condi-
tions to assess whole-cell responses to
various stimuli. One example of this
approach is the RNA interference mi-
croarray (21). RNA interference is an
experimental method that takes ad-
vantage of one of the cell’s natural
defense mechanisms. On a small scale,
RNA interference allows investigators
to specifically inhibit the translation of
individual genes. Array-based RNA
interference facilitates high-through-
put analysis of hundreds of inhibitory
RNAs simultaneously. With this plat-
form, inhibitory RNA sequences are
generally spotted and fixed on the ar-
ray surface. The arrays are incubated
with adherent cells of interest, which
facilitates uptake of the inhibitory
RNA and subsequent knockdown of
cellular genes. At a fundamental level,
this powerful technology allows one
to uncover the large-scale roles of par-
ticular genes and their genome-wide
influence. Several proof-of-concept
studies have been published about
this novel platform (22,23). For exam-
ple, Berns et al (22) constructed a li-
brary of expression vectors for short
hairpin RNAs, which were designed
to individually silence 7,914 different
genes. The investigators then devised
a system to screen for genes that,
when “knocked down,” could escape
cell cycle arrest (22). This system al-
lowed the investigators to identify not
only p53 as a critical regulator of their
cell cycle arrest model, but five new
genes as well. Because of its high-
throughput nature and its ability to
generate new leads in understanding
human disease, this technology may
be invaluable for many other fields of

biomedical research. Until now, one of
the limitations to the broad use of
RNA interference arrays has been the
absence of complete and effective
RNA interference libraries. Several ac-
ademic and commercial entities are
devising such libraries, making the
use of this platform more feasible (23).
Because this new high-throughput
tool is potentially so powerful, it is
likely to become an essential tool in
the repertoire of high-throughput biol-
ogy.

Protein Arrays

Drug discovery may benefit not
only from nucleotide-based arrays but
also from the new arrival of protein
microarrays. These devices are being
actively developed to investigate the
many dimensions of protein biology,
including cellular protein content, pro-
tein/protein interactions, and enzy-
matic activity. Several groups have ap-
plied this technology to characterize
cancer (24–26), autoimmune disease
(27,28), and experimental models of
type I diabetes mellitus (29). To iden-
tify novel protein/protein interac-
tions, others have arrayed thousands
of proteins and characterized the ex-
tent of antibody, calmodulin, lipid,
and integrin �IIb�3 binding (30,31).
Even more recently, Ramachandran et
al (32) demonstrated that protein mi-
croarrays could be “self-assembled”
from cDNA by use of a cell-free mam-
malian reticulocyte lysate. Because
protein arrays have been relatively dif-
ficult to manufacture, this discovery
has the potential to make protein ar-
rays more broadly accessible by coopt-
ing widely available tools for the
printing of cDNA arrays. With such

arrays more accessible, investigators
will be able to rapidly assay protein/
protein interactions of any protein of
interest. Array-based methods for the
assessment of protein enzymatic activ-
ities are also beginning to be devel-
oped. By arraying more than 1,000
protein kinases in microwells of a flex-
ible silicone sheet, it is also possible to
assess the ability of each of these ki-
nases in phosphorylating a series of
potential substrates (33). As each of
these protein array modalities are fur-
ther developed, investigators will be
able to more easily explore the highly
uncharacterized dimension of protein
interaction.

As can be seen by these technolo-
gies, with the sequencing of the hu-
man genome and advances in fabrica-
tion methods, high-throughput arrays
can be manufactured and used for
many biological substrates. Although
gene expression microarrays continue
to be the most widely used array plat-
form, other arrays designed to silence
individual genes, assess DNA content,
and assess protein interactions are also
being developed. In parallel to these
advances, statistical methods for the
interpretation of these high-through-
put data have also been rapidly devel-
oped. Such methods are essential for
answering specific biological ques-
tions, for visualizing the sheer volume
of data produced, and for providing
biological interpretations that best fit
the pattern of data observed.

INTERPRETATION OF ARRAY
DATA

Background

Because of its high-throughput na-
ture, array-based data methods pro-
duce information orders of magnitude
greater than conventional experiments
and introduce statistical challenges
not encountered in conventional biol-
ogy. Although the principles dis-
cussed herein are applicable to other
array-based platforms, we will focus
our attention on gene expression ar-
rays to simplify discussion. In many
cases, the magnitudes of array signals
are not dramatically different from the
level of background noise. Many tech-
nical improvements, including the use
of multiple probes for single genes
and cohybridization of multiple sam-
ples, have gradually improved array

Current Array-based Methods for High-throughput Biology

Method Probe Target

SNP cDNA, oligonucleotide Fragmented DNA
CGH cDNA, oligonucleotide Fragmented DNA
Promoter (ChIP chip) cDNA Fragmented DNA “enriched”

by ChIP
Gene expression cDNA, oligonucleotide Messenger RNA
Protein Antibodies, proteins,

substrates
Protein/protein function

Note.—Multiple platforms exist for probing many dimensions of cellular and
molecular biology. Each array consists of probes fixed to the array surface. These
probes are each designed to quantify the relative amount of a molecular target.
ChIP � chromatin immunoprecipitation.
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platforms, but this continues to be an
important issue because biological
samples themselves have considerable
variability. Although this is also a
challenge for conventional biological
methods, this problem is magnified
because of the sheer number of simul-
taneous experiments being performed
on a microarray.

Suppose one would like to identify
genes that are altered in expression
between hepatocellular carcinoma and
adjacent liver tissue. For this purpose,
several paired samples can be ob-
tained from a variety of patients. With
a conventional biological approach,
we may hypothesize that a particular
gene should be expressed more
greatly in the tumor sample than in
normal liver because it enhances cell
proliferation. We can perform the cor-
responding assay, isolating RNA from
each biopsy specimen, and compare
the expression of the gene between tu-
mor and normal tissue. A Student t
test and a conventional threshold for
statistical significance (� value of 0.05)
may then be used to assess whether
gene expression is significantly different
between tumor and normal tissue. By
doing so, we can effectively assess the
reproducibility of this experiment, given
the same tumor and normal tissue.

In a microarray experiment, in
which no specific genes are isolated,
we simultaneously perform this exper-
iment on thousands of genes. Total
cellular RNA may be extracted from
each of these samples and hybridized
on corresponding arrays, and gene ex-
pression scores for every measured
gene can be obtained from the confo-
cal image. Because so many RNA spe-
cies are being measured, we must ac-
count for the thousands of parallel
statistical tests being performed or risk
identifying false-positive findings based
on the sheer number of experiments at-
tempted. With use of the same statistical
tests and significance thresholds, we
would expect one of every 20 tests to
have a false-positive result by chance
alone. Therefore, for an array of 10,000
probes, approximately 500 false-positive
findings would be expected. If we do
not adequately address these issues,
many of the genes we identify may be
spurious and may not reliably be
found again in future studies.

Several approaches can be used to
address this problem by changing the
statistical test used to determine statis-

tical significance and/or changing the
threshold for statistical significance.
One such approach is to use Bonfer-
roni correction. The Bonferroni correc-
tion corrects for the number of parallel
tests by dividing the significance
threshold by the number of statistical
tests being performed (�Bonf � �/n).
Some investigators refer to this thresh-
old as an array-wide false-positive rate
(34). In other words, for an �Bonf value
of 0.05, there is a 5% chance that at
least one false-positive result will be
observed in the list of “significant” dif-
ferences in gene expression. With an n
on the order of 105, this threshold for
significance becomes very small, and
changes in gene expression must be
extremely dramatic to be detected. As
previously mentioned, array signals
are rarely dramatically different from
background noise. Therefore, for most
statistical tests that are commonly
used, Bonferroni thresholds are too
strict, and few if any genes can be
found that achieve this level of statis-
tical significance. Another commonly
used statistical threshold is the false-
discovery rate. Instead of strictly relat-
ing the threshold to the number of
statistical tests performed, the false-
discovery rate is based on the number
of “significant” genes identified. One
way of performing this is by ranking
the P values for hundreds of genes and
choosing a threshold for significance
through an iterative process. Suppose
a false-discovery rate of 0.05 is de-
sired. By choosing this false-discovery
rate, one expects that approximately
one of every 20 genes identified will be
a false-positive finding. The P value
threshold is iteratively changed until
the expected number of false-positive
findings equals 0.05. Generally less
strict than the Bonferroni threshold,
false-discovery rate can be a viable al-
ternative and has been integrated into
several statistical tools for microarray
analysis (5,35).

The choice of a statistical test to
interpret gene expression data is
highly dependent on the experimental
design and on the assumptions that
the investigator is willing to accept.
Statistical assumptions about the un-
derlying data can be powerful if valid
and can increase the sensitivity for real
changes in gene expression. Therefore,
a wide spectrum of statistical tools
have been developed, each addressing
different sets of initial assumptions.

They range from nonparametric tests
(35) to the conventional parametric
tests (eg, t test, analysis of variance), to
the novel parametric tests (eg, Cy-
ber-T, VAMPIRE) (34,36). Although
not all these methods have been thor-
oughly compared in the literature,
there is increasing evidence of im-
proved sensitivity and specificity in
highly parameterized statistical tests
that account for the relationship be-
tween gene expression and noise (4).

Higher-order analyses are also pos-
sible with array data. Clustering meth-
ods are commonly used to group data
by similarities in signal patterns. Sup-
pose we again examine the pattern of
expression of human hepatocellular
carcinomas. We may use clustering
tools to group genes that are most sim-
ilar in expression pattern across all
samples. This form of clustering is the-
oretically useful for bringing together
genes that share common regulation
(37). Alternatively, we may also clus-
ter tumor samples to group tumors
that are most related based on their
global expression profile. This form of
clustering can bring together tumors
that are most similar and can separate
tumors that are most different in their
gene expression profile. Finally, we
may cluster samples on both “axes” in
such a manner that groups of genes
that are similar are grouped along
with samples that share similar global
expression profiles (Fig 4). When no
previous categorizations are available
for the data, this can be useful for the
stratification of different cancer types.
Several investigators have used this
type of approach to discover new tumor
classes, some of which have distinct dif-
ferences in clinical outcome based on
these new molecular classifications (38).

More recent algorithms are begin-
ning to integrate the knowledge con-
tained in biological databases into the
interpretation of array data. Instead of
relying solely on patterns in expres-
sion, several authors (39–41) have de-
vised tools that integrate annotation
databases such as Gene Ontology,
Kyoto Encyclopedia of Genes and Ge-
nomes, and the TRANSFAC transcrip-
tion factor database to facilitate inter-
pretation. These databases provide a
highly structured framework for de-
fining specific biological terms and
mapping these terms to individual
genes. Specifically, the Gene Ontology
database stores information about spe-
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cific molecular functions, biological
processes, and cellular locations (39).
The Kyoto Encyclopedia of Genes and
Genomes database provides a re-
source to associate genes with signal-
ing networks and metabolic maps (40).
The TRANSFAC database describes
the location and nature of upstream
transcription factor binding sites (41).
Tools that interface these databases
range from those that solely provide
database access to tools that integrate
sophisticated statistical calculations to
identify the most robust biological pat-
terns in a set of gene expression data
(5,42–44).

The development of high-through-
put array platforms has led to an
explosion of biological data and has
stimulated the creation of several da-
tabases for providing public access.
Among the most widely used public
repositories are the Gene Expression
Omnibus provided by National Center
for Biotechnology Information, the

Stanford Microarray Database, and
ArrayExpress at the European Bioin-
formatics Institute (45–47). Because of
the high dimensionality of these data,
it is likely that much of the knowledge
contained in these easily accessible
data sets has yet to be uncovered. In
addition, as novel approaches for in-
terpreting these data are devised,
individual investigators may find it in-
creasingly valuable to reinterpret pre-
viously published data to guide scien-
tific discovery and to identify new
avenues of scientific research.

CONCLUSION

High-throughput methods have al-
ready had a considerable impact on
biomedical research. When adopting
high-throughput technology, new in-
vestigators should identify the most
effective platform and experimental
design that best fits their biological
question, given their specific resource

limitations. Unlike traditional biologi-
cal experiments, these experiments are
generally processing intensive, and
considerable care during the analysis
is required to obtain reproducible re-
sults and interpretations. In cancer, for
example, these new tools have pointed
us to a better understanding of the cell
cycle–regulatory pathways that lead to
tumorigenesis. In type II diabetes mel-
litus, they suggest that mitochondrial
function may be a limiting factor to
metabolic function in insulin resis-
tance (48). In rheumatologic disease,
they may be valuable for characteriz-
ing the pattern of autoantibodies asso-
ciated with each clinical syndrome
(28). As new commercial products ar-
rive to take advantage of improved
diagnostic and prognostic accuracy
and advances in miniaturization, high-
throughput technology may also exert
a similar influence on clinical practice.
These devices may shape the decisions
that physicians and patients make re-
garding the form and extent of chemo-
therapy to pursue, for example. Med-
ical therapeutic agents will also likely
evolve as these tools enhance decision
making. In the future, we may im-
prove targeted therapy for even finer
classifications of disease that are cur-
rently indistinguishable by histopatho-
logic examination. Although they are
not addressed in this report, informa-
tion systems for the storage and inter-
face of this biomedical knowledge
must also adapt to allow physicians to
provide optimal care to their patients.
Medical practice has and will continue
to undergo great transformations, and
it is likely that high-throughput bio-
logical tools will play an important
role (Appendix).
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APPENDIX:
GLOSSARY

Term Definition

CGH Comparative genomic hybridization, a method to determine the relative number of
chromosomal segments present in a particular sample

� Threshold for type I error, the likelihood of a false-positive result
Amplification Abnormal increase in the number of copies of a particular segment of DNA; can be

associated with oncogenes,
Bonferroni correction Statistical correction that accounts for the number of statistical tests performed, often

performed by dividing the significance threshold � by the number of tests (�bonf � �/n).
cDNA Complementary DNA, usually obtained through reverse-transcription of mRNA
“ChIP chip” Chromatin immunoprecipitation combined with microarray analysis; generally used to

assess the location of transcription factors and other proteins across the genome
cRNA Complementary RNA, usually obtained from reverse-transcription of mRNA, followed by

in vitro transcription
Deletion Abnormal loss in the number of copies of a particular segment of DNA; can be associated

with tumor suppressor genes
FDR False-discovery rate. A statistical correction that accounts for the number of statistical

tests by setting an a priori rate of acceptable false-positives.
Fluorescence in situ

hybridization
A physical genomic mapping technique that utilizes fluorescently labeled DNA probes

which bind to chromosomes or chromatin and which can then be detected by
fluorescence microscopy. It is commonly used to identify the chromosomal location of
a particular genomic sequence or to detect a chromosomal abnormality such as a
translocation

Genomics The comprehensive study of the structure and function of the entire set of genes in a cell
or organism

Human Genome Project A large international research project coordinated by the NIH and DOE to map and
sequence the DNA in the entire human genome

Interactomics The study of the complement of biomolecular interactions
LM-PCR Ligation-mediated polymerase chain reaction, a method used to prime all nucleotide

species for replication, followed by PCR-based replication
mRNA Messenger RNA, the transcribed RNA sequences responsible for protein expression
Oligonucleotide A short string of nucleotides, typically consisting less than 25 bases
Oncogene A gene capable of transforming normal cells into cancer cells and are typically involved

in cell growth or differentiation. Examples include myc, ras, and HER-2/neu
Probe A chemical (eg, oligonucleotides, cDNA, antibodies, substrates) fixed to the array surface,

which is specifically bound or modified by a target of interest; typically thousands of
individual probes are placed at specific locations across the array; in the case of a gene
expression array, probes are oligonucleotides or cDNA specific for a particular mRNA

Probe set A collection of probes that cumulatively measure signal for a particular nucleotide
species; devised by Affymetrix to provide a more robust measurements from their gene
expression microarrays

Proteomics The systematic study of the protein complement of the genome
RNAi RNA interference. The method of performing gene silencing by using small inhibitory

RNA sequences.
RNAi array RNA interference array; designed to simultaneously assess the effect of RNAi on

thousands of individual genes
Single nucleotide polymorphism

(SNP)
Common but small variations in genomic DNA sequences that occur at a frequency of

approximately 1 in 1,000 bases and in �1% of the population
siRNA Small inhibitory RNA, used to inhibit translation of specific gene transcripts
Target Biomolecules being measured by the array; in the case of a gene expression array, targets

are the extracted mRNA from a biopsy or other biological specimen
Transcriptomics The study of the gene expression (mRNA) levels of the set of all genes in a given

population in a given condition
Tumor suppressor genes Genes which generally inhibit the uncontrolled growth of cells. Examples include p53,

and BRCA1
Two-channel microarray An array that measures signals from two samples simultaneously
Watson-Crick base pairing Complementary nitrogenous base pairing that connects complementary strands of DNA

or RNA and consist of hydrogen bond associations between purines and pyrimidines
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